Often Asked Questions

What are Bridges on the Motherboard..??

 

Bridges control access to the processor from the peripherals. There are two main bridges on a motherboard the Northbridge and the Southbridge.

The Northbridge, also known as the Memory Controller Hub (MCH), is traditionally one of the two chips in the core logic chipset on a PC motherboard. The Northbridge typically controls communications between the CPU, RAM, AGP or PCI Express, and the Southbridge.. A Northbridge will typically work with only one or two classes of CPUs and generally only one type of RAM. There are a few chipsets that support two types of RAM (generally these are available when there is a shift to a new standard).

The Southbridge, also known as the I/O Controller Hub (ICH), is a chip that implements the “slower” capabilities of the motherboard in a Northbridge Southbridge chipset computer architecture. The Southbridge can usually be distinguished from the Northbridge by not being directly connected to the CPU. Rather, the Northbridge ties the Southbridge to the CPU. The functionality found on a contemporary Southbridge includes:PCI bus, ISA bus, SMBus, DMA controller, Interrupt controller, IDE, (SATA or PATA) controller ,LPC Bridge, Real Time Clock, Power management (APM and ACPI) and Nonvolatile BIOS memory

 

 

What is the difference between SDRAM and DDR RAM?


Let's start with DRAM (Dynamic Random Access Memory) is used to temporarily store information on computers. DRAM is made up of many cells and each cell is referred to as a bit. A cell contains a capacitor and a transistor. Since computer machine language is made up of 1s and 0s, it has the value of one when active and zero when inactive.
SDRAM or Synchronous Random Access Memory is the result of DRAM evolution. This type of memory synchronizes the input and output signals with the system board. Its speed ratings are in MHz. SDRAM was introduced in 1996 and is still used today. SDRAM transmits every clock count at a specific time.
DDR RAM (or Double Data Rate Random Access Memory) does the same but it does so twice every clock count. This makes DDR RAM twice as fast as SDRAM. Over the years, RAM has become very fast and efficient.



What is the Functionality of BIOS .. ??



The BIOS( Basic Input Output System) refers to the software code run by a computer when first powered on. The primary function of BIOS is to prepare the machine so other software programs stored on various media (such as hard drives, floppies, and CDs) can load, execute, and assume control of the computer. This process is known as booting up.
The BIOS is stored as a ROM (Read-Only Memory) program and is retained when the machine is turned off. Settings within the BIOS may be changed by the user and these changes are stored in the BIOS memory this is maintained by a trickle of charge from the BIOS battery.


What is SATA technology .. ?? 


Serial ATA (SATA) is a computer bus technology primarily designed for transfer of data to and from a hard disk. It is the successor to the legacy AT Attachment standard (ATA). This older technology was retroactively renamed Parallel ATA (PATA) to distinguish it from Serial ATA. Both SATA and PATA drives are IDE (Integrated Drive Electronics) drives, although IDE is often misused to indicate PATA drives.
The two SATA interfaces, SATA/150, runs at 1.5 GHz resulting in an actual data transfer rate of 1.2 Gigabits per second (Gb/s), or 150 megabytes per second (MB/s). SATA II 3Gb/s resulting in an actual data transfer rate of 2.4 Gb/s, or 300 MB/s.


What is SCSI .. ??
 


SCSI stands for “Small Computer System Interface”, and is a standard interface and command set for transferring data between devices on both internal and external computer buses. SCSI is most commonly used for hard disks and tape storage devices, but also connects a wide range of other devices, including scanners, printers, CD-ROM drives, CD recorders, and DVD drives. In fact, the entire SCSI standard promotes device independence, which means that theoretically SCSI can be used with any type of computer hardware.

On a parallel SCSI bus, a device (e.g. host adapter, disk drive) is identified by a “SCSI ID”, which is a number in the range 0-7 on a narrow bus and in the range 0-15 on a wide bus.

No comments:

Post a Comment